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I ntroduction

By ‘treebank-aligned lexical resources’ we mean ones whiggee is a systematic correspondence
between the lexical resource and treebank syntactic ressurFor instance, the lexicon resource
contains features representing the subcategorizationegaf verbs, which correspond to structural
configurations that the verb occurs in, in a treebank. Giverhsan alignment, a treebank can be
compiled into a lexicon by collecting the combinations ofidal entries and their local features which
are found in the treebank. This paper focuses on the probfetneating and evaluating lexicons
for PCFGs which encode lexical features such as verbal ealéubcategorization) in pre-terminal
symbols?. We use a method based on constraint solving (similar to #@ framework described
by O’'Donovan et al. (2005)), to add feature annotations &Rkenn Treebank of English (Marcus
etal., 1993). Features are then incorporated in the synabalgontext free grammar and frequencies
are collected, resulting in a probabilistic grammar andababilistic lexicon which encodes lexical
features.

Previous research has argued that because of sparsenesscalf distributions, computational
lexicons derived from corpora should be based on very laogpus samples, much larger than the
roughly 50,000-sentence Penn Treebank (Briscoe & Cart®®7). Beil et al. (1999); im Walde
(2002) demonstrated that PCFG grammars and lexicons witrporated valence features could be
improved by iterative EM estimation; however their grammas not a treebank grammar, and there-
fore could not be evaluated using standardized evaluatiteria. Our treebank-aligned grammar and
lexicon allows us to evaluate lexical learning using a halédportion of the treebank for testing. On
the task of identifying the valence of token occurrencesavehverbs, we get a 24%reduction in er-
rors rate following a standard inside-outside estimatimtedure (Lari & Young, 1990). A modified
inside-outside procedure which re-estimated lexical ipatars while retaining syntactic parameters
in the PCFG gives a reduction in error rate of better than 41%.

In the sections to follow, we first describe our methodologydugmenting treebanks, and then
the procedure to re-estimate the treebank-aligned lexisorg unannotated data.

Treebank Feature Augmentation

Our methodology for augmenting the treebank with featumeslves parsing with a feature-constraint
grammar whose backbone is the context-free grammar obt&iom the treebank. The feature con-
straint annotations are similar to those used in LFG franmkesvitke O’Donovan et al. (2005)— however
our goal is to realize a PCFG in the end. In the first step, fohezntence in the treebank, a shared
forest data structure is constructed. This forest repteghe set of trees licenced by the context-free
backbone grammar whose vyield is the sentence. In the setagd, £onstraints are solved in the
shared forest. For solving constraints, we use the featammar parser Yap (Schmid, 2000). This
stage adds features and may split a tree into several swutio order to realize the second step, we

"While we focus on verbal valence, there are many such ldyicalented features, such as attachment preferences of
adverbs (nominal, verbal, sentential), the valence of spcdiasses of adjectives, etc.
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Figure 1: A relative clause in the transformed treebank: &roptegories are flanked by plus signs.

build a feature constraint grammar whose context free baekls extracted from local tree configu-
rations in the treebank. We automatically add feature caims$ rules (following the Yap formalism)
to the treebank grammar rule using programs written in Retlldasp. Adding these constraints re-
quires checking treebank conventions and exploiting eeguéitterns in rule shapes. For instance, in
the treebank convention, any local tree with a VP parent aa@M verb children is an auxiliary verb
construction, so the constraint “Val=aux;” identifying anxiliary verb may be placed on the verb in
the corresponding rule. Below is an example of a featuretraing rule for an auxiliary construction.
The VP has a Vform feature which marks finite or infinite VPspamother things. The Slash feature
propagates from the daughter VP to the mother VP with a i@agbThe Vform of the complement
VP is assigned to the auxiliary verb using a varialfiethe auxiliary verb is also marked with the
valence featuraux. The Prep (preposition) and Sbj (subject) features on thehave a default value
in this rule — Prep would get a value if the verb had a PP comgitenand Sbj would be marked with
the subject of an S complement. Figure 1 and 2 show sampkitrélee transformed treebank.

VP {Vfornrbase; Slash=sl;} ->
“VB {Val =aux; Prep=-; Vsel =vf; Shj =-;}
ADVP {}
VP { Sl ash=sl; Vf or n¥vf; };

We have a number of such constraints that are linguisticatiyivated and take advantage of in-
formation in the treebank. For example, there are featuheéshaconstrain the distribution of common
empty categories, using a standard slash mechanism fordistence dependencies. Dependencies
such as passive and raising are constrained with localresasuch as Vform and Vsel, and are in
effect lexicalized. Other examples of features are thosetwmark temporal or locative nouns, a
valence feature on nouns marking if the complement of theni®an S, SBAR or PP category, and
another feature marking the preposition of the PP complémeithe noun. We also have other fea-
tures which are tree-geometric but not linguistic in natfinethe style of Johnson (1998); Klein &
Manning (2003))- they are relevant to producing a good PC@ahand are not described here.
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Figure 2: Prepositional complements of nouns are marketi@naundiscounts (nval=p) along with
the preposition (nvalperp=for)

The methodology as we have presented it relies on a prargxiseebank. While developing
the feature constraints requires an understanding ofistiglanalyses and treebank conventions, we
found that the environment was a comfortable one. The fattcibnstraints are solved in the treebank
nearly eliminates the issue of ambiguity, allowing the catagional linguist to concentrate on correct
analyses while developing the constraint grammar. We emvibis platform as a standard platform
for easily augmenting existing treebanks with featuresitefrest to the computational linguist.

PCFG Compilation and Parsing application

In treebank parsing applications, PCFGs are often creatéacbrporating features into context free
grammar symbols Klein & Manning (2003). We implemented ahodtwhich compiles a frequency
table for a PCFG from the annotated treebank database. Ebrsyanbol, a list of attributes to be
incorporated is stipulated. For instance, it may be stigdlghat VP incorporates the attributes Vform
and Slash, and that verbs incorporate valence and Vformodram reads the shared forest structures
produced by constraint solving, and collects frequencfescourrences of local tree configurations,
including context free symbols and incorporated featuresases where constraint solving introduced
ambiguity, frequencies are split by a non-probabilisticsien of inside-outside. The result is a rule
frequency table and frequency lexicon which can be used bglzapilistic parser.

PCFGs derived in this way can be used by a parser to constraxitmal probability (Viterbi)
parses. We evaluate the quality of the transformed treebadkhe utility of our feature annotation
using standar@ARSEVAL measures. Our grammar scores are comparable to state-aftthinlexi-
calized grammars (the current best f-score for an unlaxegitreebank grammar to our knowledge is
86.6 in Schmid (2006)) . Our labelled bracketing score oeetisn 23 of the Penn Treebank is 86.03
(recall), 86.21 (precision) and 86.12 (f-score).

Re-estimating lexical parameters

The PCFG trained over the transformed treebank has panemelated to lexical properties of words
such as subcategorization features on verbs, attachmefetrgmce of adverbs (sentential, nominal,
verbal adverbs), valence and prepositional preferenceswis. However, since these parameters are
tied to particular words, they are not well estimated in eltesnk PCFG. In order to have a large-scale
lexicon with accurate information, it is necessary to lgasirameters from data of a much larger mag-
nitude than available treebanks. We have experimentedleatiming these parameters over a large
unannotated corpus using unsupervised training basedeoimdiue-outside algorithm. The inside-
outside algorithm iteratively re-estimates the paransetédra PCFG, given unannotated data. We
used a modified version of the inside-outside algorithm inctvlwe re-estimated lexical parameters
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3 37.041 29.167
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Figure 3: Valence error percentages for novel verbs

from unannotated data, but retain syntactic parameteginaty learnt from the treebank (Deoskar
& Rooth, 2006). Here we report results on learning the sdgmatzation frames for 100 test verbs.
All tokens of these verbs were held out from the original lisgek, so that in effect they are novel
verbs which are not represented in the Treebank PCFG. Timngadata for the unsupervised al-
gorithm was a set of 10000 unannotated sentences from theYNdwtimes containing occurrences
of these verbs. We ran the modified inside-outside procedsiregy a smoothed version of a PCFG
derived by the method described above. After each iterati@obtained a PCFG model. We ob-
tained the maximum probability parses for the test sengensing these PCFGs. The sub-cat frame
of each verb token was compared to that on the transformebank. We found that the detection
of the correct frame improved significantly after each tieraof our unsupervised procedure (Fig-
ure 3). The problem of subcategorization induction has laeleinessed in several approaches before.
The most comprehensive evaluation of subcategorizatemds acquired automatically for English
is O’Donovan et al. (2005) — they have a large number of varmas (4362), their frames are not
pre-specified, and are fine-grained (they include speciipgsition and particle use). Their approach
is parallel to ours since they annotate the Penn treebatklWiG f-structure information. They also
state that their system is a bootstrap to learn sub-catnvgtion from larger corpora by parsing an-
notated data in their probabilistic LFG framework, but do giwe results of induction of frames from
unannotated data. Our results on verbal valence show ttgg-$ale induction using a mathemati-
cally well-defined framework like inside-outside estinsatiof PCFGs is promising. Our evaluation
is different from previous approaches in that we evaluagestibcategorization of tokens of verbs in
maximum probability parses, and not over existing dicti®@sga We believe that this evaluation over
token occurrences is directly relevant to NLP tasks.

We have presented a framework that allows for augmentatianteeebank with linguistically
motivated features which also allows the building of a PCR& tan be further used in applications
for learning of lexical information. The framework can beplgd to languages with existing tree-
banks in order to obtain treebank-aligned resources anddtstoap induction of lexical information
from unannotated data. We plan to use the framework to leiner ¢exically dependent parameters
such as the prepositional attachment preference of veths@ms, attachment preference (sentential,
nominal, verbal) of adverbs, valence of nouns, etc. in oraereate probabilistic lexicons useful for
parsing where this type of information about lexical itemsapresented.

Distribution

The resources and programs used to build the augmentedmieend the treebank-aligned PCFG
(along with Make files to build them) are being released. Tiweqdure for building the PCFG is
parameterized by the features which are incorporated iR@#€G. The components are modular and
can be used in ways other than the ones discussed here. tamcesfeature constraints can be solved
in a Viterbi tree resulting from parsing with the PCFG. Thenpmnents used in the compilation
and induction procedure are listed below. Bitpar and yapster have been distributed by Helmut
Schmid.



Regularize treebank

Map output of 1 to feature constraint grammar

Map each regularized treebank tree to trivial sharedstenepresenting one tree
Solve feature constraints in the shared forest (yapeso(8chmid, 2000)

Map feature shared forest to PCFG rules and lexical entrit

incorporated features (Privman, 2003)

Smoothing of PCFG lexicon

PCFG viterbi parsing and inside-outside re-estimatitpér, (Schmid, 2004)

8. Lexicon smoothing for modified inside-outside procedure
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