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Introduction

By ‘treebank-aligned lexical resources’ we mean ones wherethere is a systematic correspondence
between the lexical resource and treebank syntactic resources. For instance, the lexicon resource
contains features representing the subcategorization frames of verbs, which correspond to structural
configurations that the verb occurs in, in a treebank. Given such an alignment, a treebank can be
compiled into a lexicon by collecting the combinations of lexical entries and their local features which
are found in the treebank. This paper focuses on the problem of creating and evaluating lexicons
for PCFGs which encode lexical features such as verbal valence (subcategorization) in pre-terminal
symbols1. We use a method based on constraint solving (similar to the LFG framework described
by O’Donovan et al. (2005)), to add feature annotations to the Penn Treebank of English (Marcus
et al., 1993). Features are then incorporated in the symbolsof a context free grammar and frequencies
are collected, resulting in a probabilistic grammar and a probabilistic lexicon which encodes lexical
features.

Previous research has argued that because of sparseness of lexical distributions, computational
lexicons derived from corpora should be based on very large corpus samples, much larger than the
roughly 50,000-sentence Penn Treebank (Briscoe & Carroll,1997). Beil et al. (1999); im Walde
(2002) demonstrated that PCFG grammars and lexicons with incorporated valence features could be
improved by iterative EM estimation; however their grammarwas not a treebank grammar, and there-
fore could not be evaluated using standardized evaluation criteria. Our treebank-aligned grammar and
lexicon allows us to evaluate lexical learning using a held-out portion of the treebank for testing. On
the task of identifying the valence of token occurrences of novel verbs, we get a 24%reduction in er-
rors rate following a standard inside-outside estimation procedure (Lari & Young, 1990). A modified
inside-outside procedure which re-estimated lexical parameters while retaining syntactic parameters
in the PCFG gives a reduction in error rate of better than 41%.

In the sections to follow, we first describe our methodology for augmenting treebanks, and then
the procedure to re-estimate the treebank-aligned lexiconusing unannotated data.

Treebank Feature Augmentation

Our methodology for augmenting the treebank with features involves parsing with a feature-constraint
grammar whose backbone is the context-free grammar obtained from the treebank. The feature con-
straint annotations are similar to those used in LFG frameworks like O’Donovan et al. (2005)– however
our goal is to realize a PCFG in the end. In the first step, for each sentence in the treebank, a shared
forest data structure is constructed. This forest represents the set of trees licenced by the context-free
backbone grammar whose yield is the sentence. In the second stage, constraints are solved in the
shared forest. For solving constraints, we use the feature grammar parser Yap (Schmid, 2000). This
stage adds features and may split a tree into several solutions. In order to realize the second step, we

1While we focus on verbal valence, there are many such lexically oriented features, such as attachment preferences of
adverbs (nominal, verbal, sentential), the valence of nouns, classes of adjectives, etc.
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Figure 1: A relative clause in the transformed treebank: Empty categories are flanked by plus signs.

build a feature constraint grammar whose context free backbone is extracted from local tree configu-
rations in the treebank. We automatically add feature constraints rules (following the Yap formalism)
to the treebank grammar rule using programs written in Perl and Lisp. Adding these constraints re-
quires checking treebank conventions and exploiting regular patterns in rule shapes. For instance, in
the treebank convention, any local tree with a VP parent and VP and verb children is an auxiliary verb
construction, so the constraint “Val=aux;” identifying anauxiliary verb may be placed on the verb in
the corresponding rule. Below is an example of a feature constraint rule for an auxiliary construction.
The VP has a Vform feature which marks finite or infinite VPs, among other things. The Slash feature
propagates from the daughter VP to the mother VP with a variable sl. The Vform of the complement
VP is assigned to the auxiliary verb using a variablevf, the auxiliary verb is also marked with the
valence featureaux. The Prep (preposition) and Sbj (subject) features on the verb have a default value
in this rule – Prep would get a value if the verb had a PP complement, and Sbj would be marked with
the subject of an S complement. Figure 1 and 2 show sample trees in the transformed treebank.

VP {Vform=base; Slash=sl;} ->
‘VB {Val=aux;Prep=-;Vsel=vf;Sbj=-;}
ADVP {}
VP {Slash=sl;Vform=vf;};

We have a number of such constraints that are linguisticallymotivated and take advantage of in-
formation in the treebank. For example, there are features which constrain the distribution of common
empty categories, using a standard slash mechanism for long-distance dependencies. Dependencies
such as passive and raising are constrained with local features such as Vform and Vsel, and are in
effect lexicalized. Other examples of features are those which mark temporal or locative nouns, a
valence feature on nouns marking if the complement of the noun is an S, SBAR or PP category, and
another feature marking the preposition of the PP complement on the noun. We also have other fea-
tures which are tree-geometric but not linguistic in nature(in the style of Johnson (1998); Klein &
Manning (2003))- they are relevant to producing a good PCFG model and are not described here.
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Figure 2: Prepositional complements of nouns are marked on the noundiscounts (nval=p) along with
the preposition (nvalperp=for)

The methodology as we have presented it relies on a pre-existing treebank. While developing
the feature constraints requires an understanding of linguistic analyses and treebank conventions, we
found that the environment was a comfortable one. The fact that constraints are solved in the treebank
nearly eliminates the issue of ambiguity, allowing the computational linguist to concentrate on correct
analyses while developing the constraint grammar. We envision this platform as a standard platform
for easily augmenting existing treebanks with features of interest to the computational linguist.

PCFG Compilation and Parsing application

In treebank parsing applications, PCFGs are often created by incorporating features into context free
grammar symbols Klein & Manning (2003). We implemented a method which compiles a frequency
table for a PCFG from the annotated treebank database. For each symbol, a list of attributes to be
incorporated is stipulated. For instance, it may be stipulated that VP incorporates the attributes Vform
and Slash, and that verbs incorporate valence and Vform. A program reads the shared forest structures
produced by constraint solving, and collects frequencies of occurrences of local tree configurations,
including context free symbols and incorporated features.In cases where constraint solving introduced
ambiguity, frequencies are split by a non-probabilistic version of inside-outside. The result is a rule
frequency table and frequency lexicon which can be used by a probabilistic parser.

PCFGs derived in this way can be used by a parser to construct maximal probability (Viterbi)
parses. We evaluate the quality of the transformed treebankand the utility of our feature annotation
using standardPARSEVAL measures. Our grammar scores are comparable to state-of-the art unlexi-
calized grammars (the current best f-score for an unlexicalized treebank grammar to our knowledge is
86.6 in Schmid (2006)) . Our labelled bracketing score over section 23 of the Penn Treebank is 86.03
(recall), 86.21 (precision) and 86.12 (f-score).

Re-estimating lexical parameters

The PCFG trained over the transformed treebank has parameters related to lexical properties of words
such as subcategorization features on verbs, attachment preference of adverbs (sentential, nominal,
verbal adverbs), valence and prepositional preferences ofnouns. However, since these parameters are
tied to particular words, they are not well estimated in a treebank PCFG. In order to have a large-scale
lexicon with accurate information, it is necessary to learnparameters from data of a much larger mag-
nitude than available treebanks. We have experimented withlearning these parameters over a large
unannotated corpus using unsupervised training based on the inside-outside algorithm. The inside-
outside algorithm iteratively re-estimates the parameters of a PCFG, given unannotated data. We
used a modified version of the inside-outside algorithm in which we re-estimated lexical parameters
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Iterationi Standard Modified
Inside-Outside Inside-Outside

0 (smoothed treebank PCFG) 48.810 48.810
1 39.921 37.698
2 38.928 30.159
3 37.041 29.167
4 37.239 28.869
5 37.835 28.472

Figure 3: Valence error percentages for novel verbs

from unannotated data, but retain syntactic parameters originally learnt from the treebank (Deoskar
& Rooth, 2006). Here we report results on learning the subcategorization frames for 100 test verbs.
All tokens of these verbs were held out from the original treebank, so that in effect they are novel
verbs which are not represented in the Treebank PCFG. The training data for the unsupervised al-
gorithm was a set of 10000 unannotated sentences from the NewYork times containing occurrences
of these verbs. We ran the modified inside-outside procedureusing a smoothed version of a PCFG
derived by the method described above. After each iteration, we obtained a PCFG model. We ob-
tained the maximum probability parses for the test sentences using these PCFGs. The sub-cat frame
of each verb token was compared to that on the transformed treebank. We found that the detection
of the correct frame improved significantly after each iteration of our unsupervised procedure (Fig-
ure 3). The problem of subcategorization induction has beenaddressed in several approaches before.
The most comprehensive evaluation of subcategorization frames acquired automatically for English
is O’Donovan et al. (2005) – they have a large number of verb lemmas (4362), their frames are not
pre-specified, and are fine-grained (they include specific preposition and particle use). Their approach
is parallel to ours since they annotate the Penn treebank with LFG f-structure information. They also
state that their system is a bootstrap to learn sub-cat information from larger corpora by parsing an-
notated data in their probabilistic LFG framework, but do not give results of induction of frames from
unannotated data. Our results on verbal valence show that large-scale induction using a mathemati-
cally well-defined framework like inside-outside estimation of PCFGs is promising. Our evaluation
is different from previous approaches in that we evaluate the subcategorization of tokens of verbs in
maximum probability parses, and not over existing dictionaries. We believe that this evaluation over
token occurrences is directly relevant to NLP tasks.

We have presented a framework that allows for augmentation of a treebank with linguistically
motivated features which also allows the building of a PCFG that can be further used in applications
for learning of lexical information. The framework can be applied to languages with existing tree-
banks in order to obtain treebank-aligned resources and to bootstrap induction of lexical information
from unannotated data. We plan to use the framework to learn other lexically dependent parameters
such as the prepositional attachment preference of verbs and nouns, attachment preference (sentential,
nominal, verbal) of adverbs, valence of nouns, etc. in orderto create probabilistic lexicons useful for
parsing where this type of information about lexical items is represented.

Distribution

The resources and programs used to build the augmented treebank and the treebank-aligned PCFG
(along with Make files to build them) are being released. The procedure for building the PCFG is
parameterized by the features which are incorporated in thePCFG. The components are modular and
can be used in ways other than the ones discussed here. For instance, feature constraints can be solved
in a Viterbi tree resulting from parsing with the PCFG. The components used in the compilation
and induction procedure are listed below. Bitpar and yap-compiler have been distributed by Helmut
Schmid.
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1. Regularize treebank
2. Map output of 1 to feature constraint grammar
3. Map each regularized treebank tree to trivial shared forests representing one tree
4. Solve feature constraints in the shared forest (yap-solver, (Schmid, 2000)
5. Map feature shared forest to PCFG rules and lexical entries with

incorporated features (Privman, 2003)
6. Smoothing of PCFG lexicon
7. PCFG viterbi parsing and inside-outside re-estimation (bitpar, (Schmid, 2004)
8. Lexicon smoothing for modified inside-outside procedure
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